
Important changes of onion plant behaviours on its way from seed to maturity

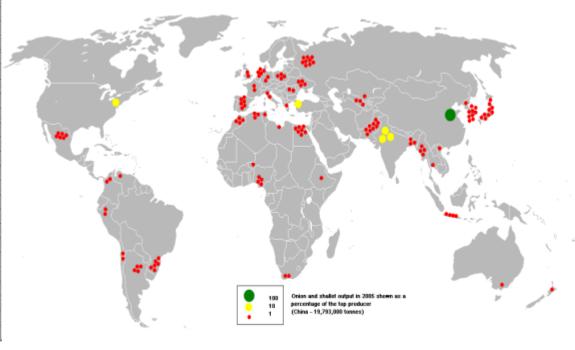
Peter Grauert; Norseco; Canada; August 2014

Thank you for kind Invitation and Interest

Merci beaucoup pour l'invitation

C.V.– Peter Grauert

- Agricultural education at Justus v. Liebig University Giessen (Germany)
- PhD in applied Genetics
- Product Management for International Vegetable Seed Company (focus : onion).
- 2,5 years in Italy production manager for counterseason export (incl. overwintering onion)
- Since 1990 responsible for Limagrain vegetable seed sales Germany, A, CH, SK, CZ
- Retirement 10/2012
- November 2012 establishment of concepa


Issues of Presentation

- The onion world and main markets
- Discussion how to benchmark and how to translate results from elsewhere
- How does the photoperiod work and what does it mean for a local grower
- Discussion of major production hazards
- Nitrogen discussion
- Maturity and dormancy
- Questions and hopefully answers

Table:-1 Area, production and productivity of onion in major onion producing countries during 2008			
China	1001171	20817295	20.79
India	804600	8178300	10.16
United States of America	62120	3349170	53.91
Pakistan	153100	2015200	13.16
Turkey	75000	2007120	26.76
Russian Federation	128600	1900000	14.77
Egypt	52885	1728417	32.68
Iran, Islamic Republic of	50000	1700000	34.00
Brazil	63639	1299815	20.42
Mexico	42998	1252441	29.13
Japan	24500	1165000	47.55
Netherlands	26200	1130000	43.13
Spain	21100	1098400	52.06
Ukraine	62000	1049200	16.92
Korea, Republic of	15392	1035076	67.25
Bangladesh	125226	889260	7.10
Indonesia	91780	824064	8.98
Myanmar	60000	740000	12.33
Uzbekistan	23000	728000	31.65
Argentina	24000	700000	29.17
Algeria	38000	700000	18.42
Morocco	27900	662140	23.73
Peru	18879	634393	33.60
Nigeria	42000	621000	14.79
Poland	30187	618233	20.48
Germany	8942	407602	45.58
Italy	13589	403521	29.69
Romania	34810	395579	11.36
South Africa	17000	380386	22.38
Kazakhstan	18500	376840	20.37
Niger	10500	373637	35.58
United Kingdom	8575	349200	40.72
WORLD	3731659	66829917	17.91

The onion world production (FAO 2011)

Evolutionary Background of Onions

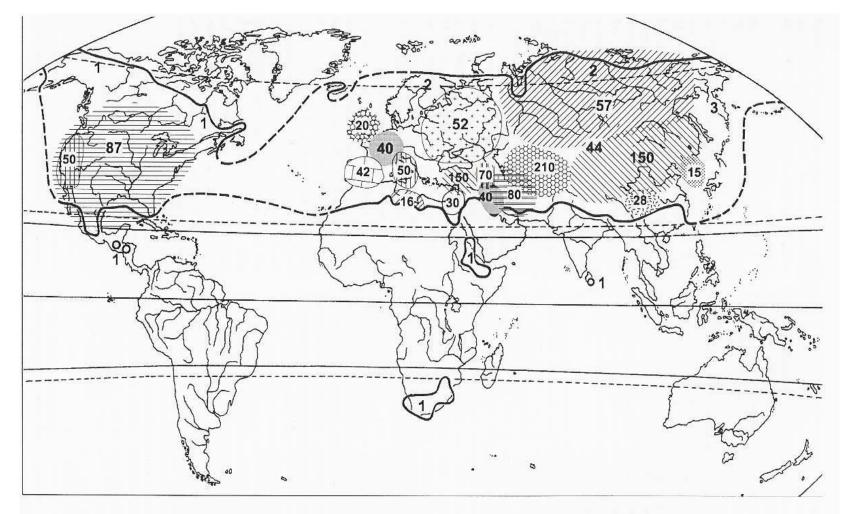
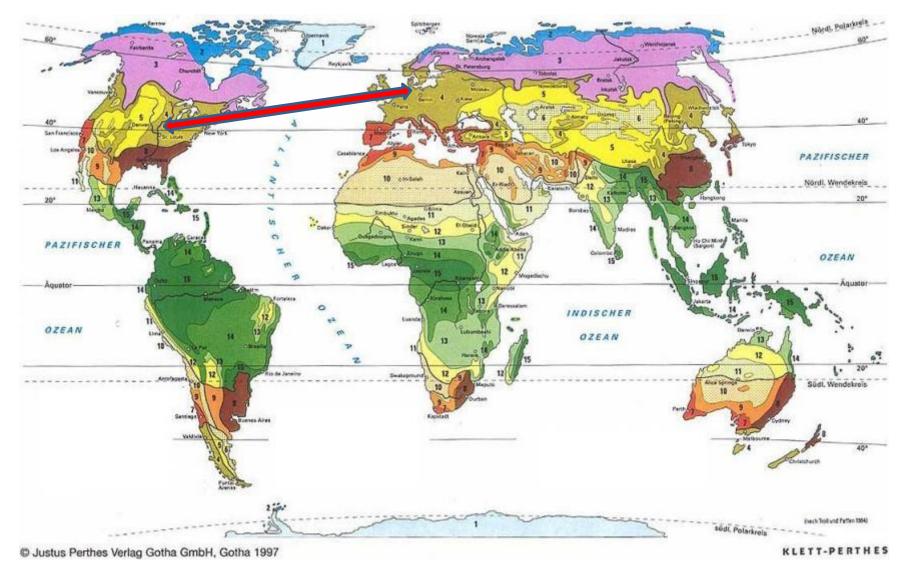



Fig. 1.1. World distribution of wild species of the genus Allium. The numbers on the map indicate the number of species found in each region.


Climates and Latitudes

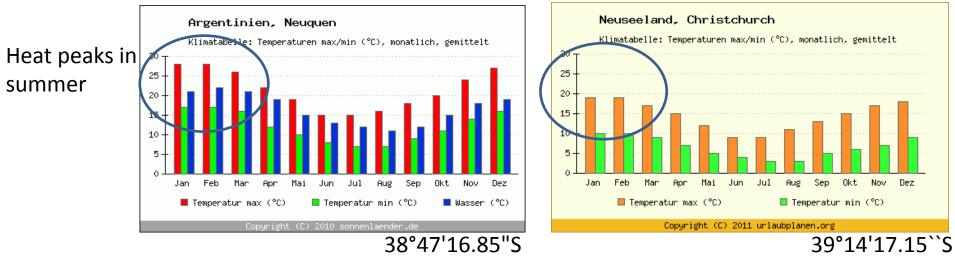
The Hemispheres and available Landmass

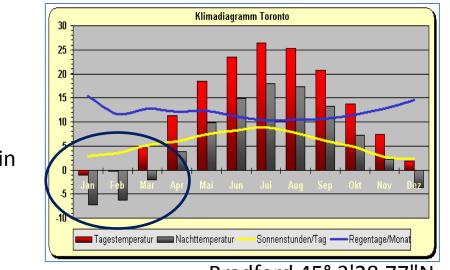
Physical Map of the World. April 2006

concepa

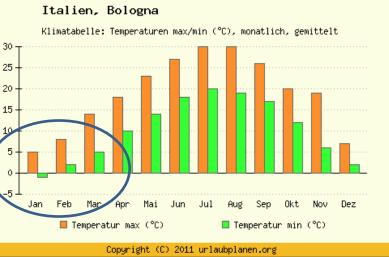
World Onion Production (FAO 2011)

- Onions are planted in 175 countries = global crop like tomatoes
- The production is abt 46,7 Mio to
- The surface is 2,7 Mio ha
- Average yield accordingly abt. 17,3 to/ha
- Abt 8 % of production only is traded internationally -> price levels!
- By far largest oversea shipping areas are Netherlands and Oceania

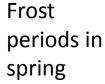



Advantages of NL and Oceania onion production

- Climatical conditions allow to grow varieties fully mechanised
- The varieties are hard and suitable for bulk storage
 > 4 m high and handling (big bags)
- The varieties available show good skin retention and hardiness and storability
- Qualities allow oversea long distance shipment
- Excellent infrastructure for oversea transport in esp.
 In Netherlands

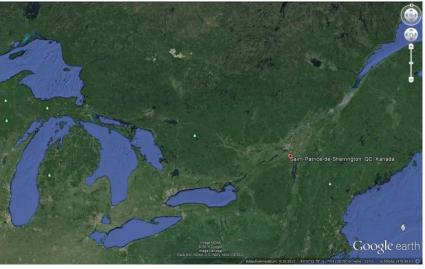


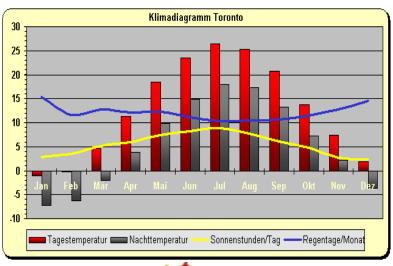
Comparison of related Onion Areas



Bradford 45° 3'28.77"N

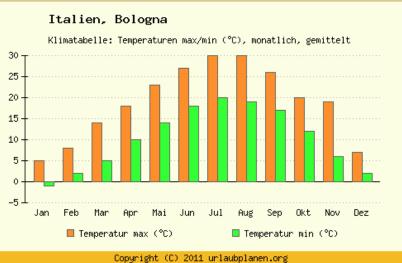
44°32'8.58"N



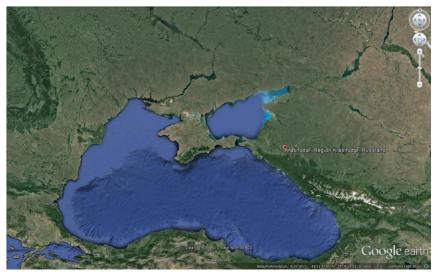


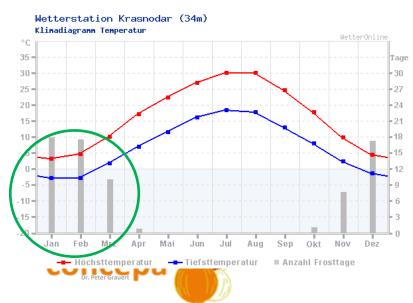
Comparable Areas ?

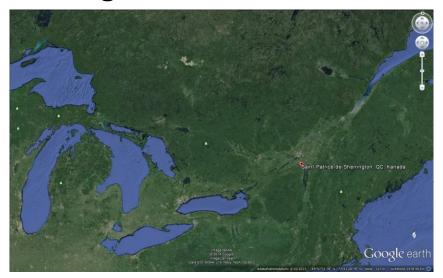
Bradford ON: 45° 3'28.77"N



concepa


Bologna Italy: 44°29'41.62"N




Or better Krasnodar?

Krasnodar : 45° 4'3.82"N

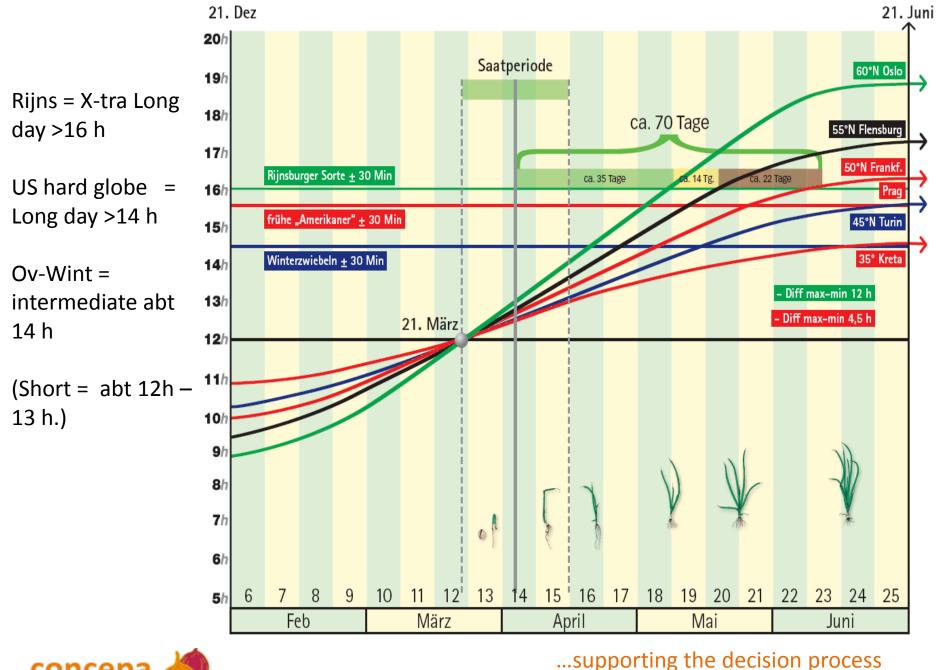
Sherrington QC :45° 9'55.54"N

Basic principles of the onion crop

- Photoperiodic reaction for bulb induction
- Predominantly a water storing crop
- Leaf canopy index 40 % only
- Bladeless scales make up to more than 50 % of bulb diameter = yield inside !!
- Storage and skins dependant very much on achieved dormancy (phytohormonal)
- Temperature reactivity often underestimated


"The plant with the sundial"

The daylength calendar is very much more reliable than the cumulation of heat units to change important development stages



Equinox 2x per Year

concepa

One may make it complicated and loose track

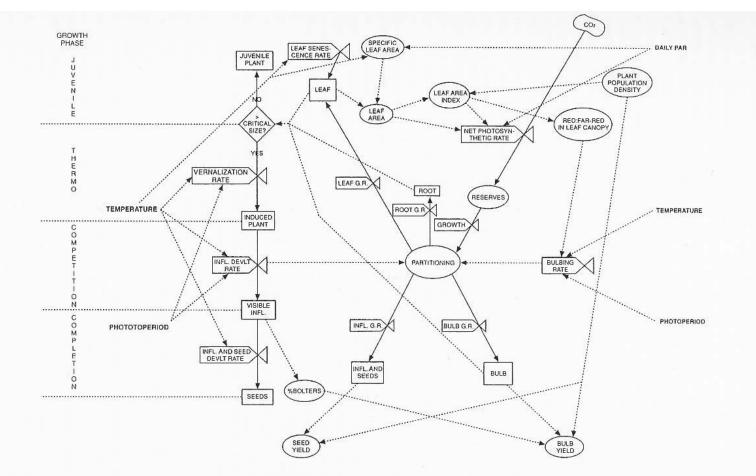
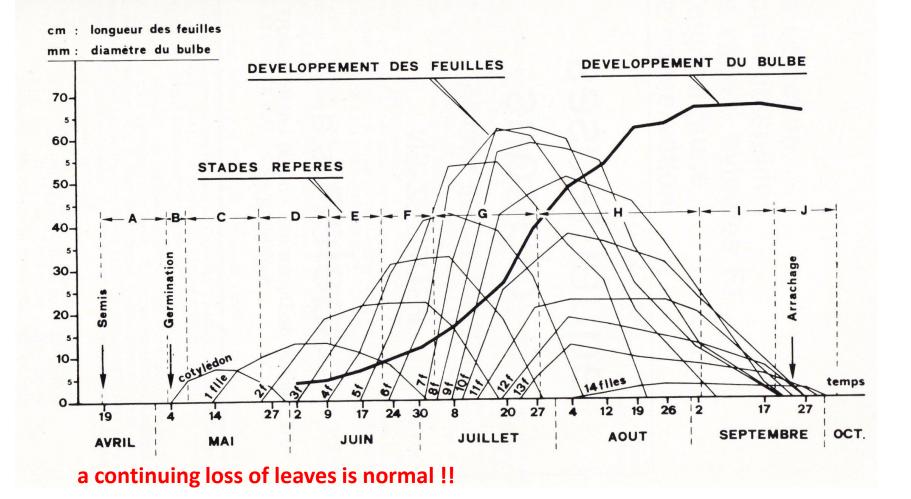
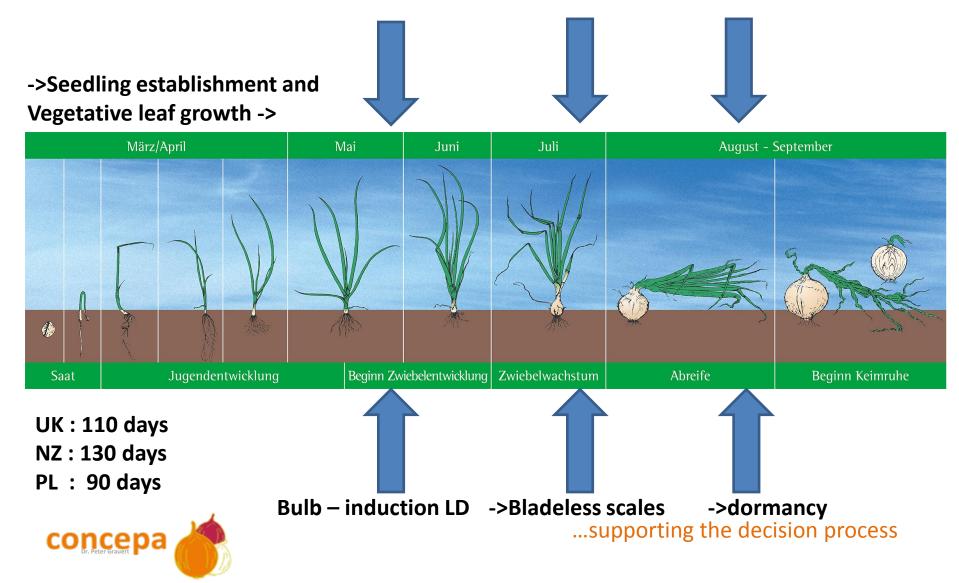



Fig. 9.1. The main environmental controls of growth and development in onions, showing how growth, bulbing and flowering interrelate to determine bulb or seed yield. Devlt, development; infl., inflorescence; G.R., growth rate (based on dry matter); PAR, photosynthetically active radiation. (From Brewster, 1997, with permission.)



The Development -Stages

The growing calendar for onions and the pyhsiologically important stages

Conclusions for the market

- From climatic basis data one can preselect suitable cultivars
- Only few production areas show sufficient coincidence of factors which allow production like NW-Europe or Oceania
- Seed production needs > 12 hours plus sufficient vernalisation
- The physiology of crop requires a very specific hazard management or risk anticipation

Conclusion for the local grower

- Growing stages defined by calendar !!
- Do not compensate late sowing by early variety - > vice versa please
- Growth stops after bulb induction may cause major trouble until no bulbing at all
- Treat the crop as gentle as possible in iuvenile stage !! (attn. : herbicides)
- Fertiliser needs have two main phases

Why "Hazard – Management " in onions

- Outdoor production shall be understood as a series of "hazards"
- Very Long life cycle incl. storage
- Specific physiology to change stages
- most hazards make anticipation of problem necessary (f. ex. Weed controll, Peronospora, soil born fungi etc.)
- Fertilisation according to stage

Conclusion : the better you understand the crop physiology the

better the decision process.

No 1 Challenge : Uniform Seedling establishment !!!

- Respect sowing period
- Soil preparation
- Irrigation > seed swelling -> Germination
- Keep time windows for germination process as small as any possible
- Improves weed controll reducing damages on later germinating seedlings
- Every growing day before bulb induction counts

Sowing time

In principle frosthardy

- Patience !!
- Soil Temp > 6 C
- Keep Soil surface open = Gas exchange
- Take care for good capillar water connection

...supporting the decision process

Risk of mechanical damage by Wind, ''ail etc.

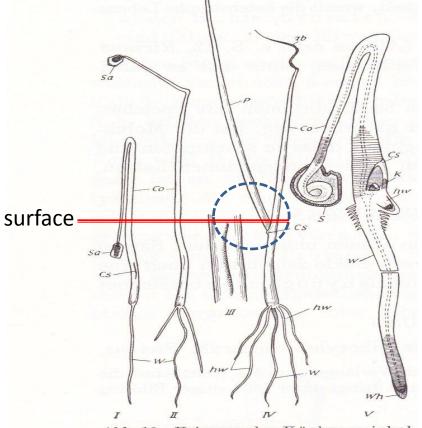


Abb. 18. Keimung der Küchenzwiebel (Allium Cepa). Sa, S Samen, Co Kotyledo, der in IV von oben her abzusterben beginnt (ab), Cs Kotyledonarspalt, der in III vergrößert wiedergegeben ist, W Primärwurzel, hw sproßbürtige Wurzeln. K Sproßknospe. V Keimpflanze schematisch. Wachstumsfähige Zonen schraffiert (V n. Sachs)

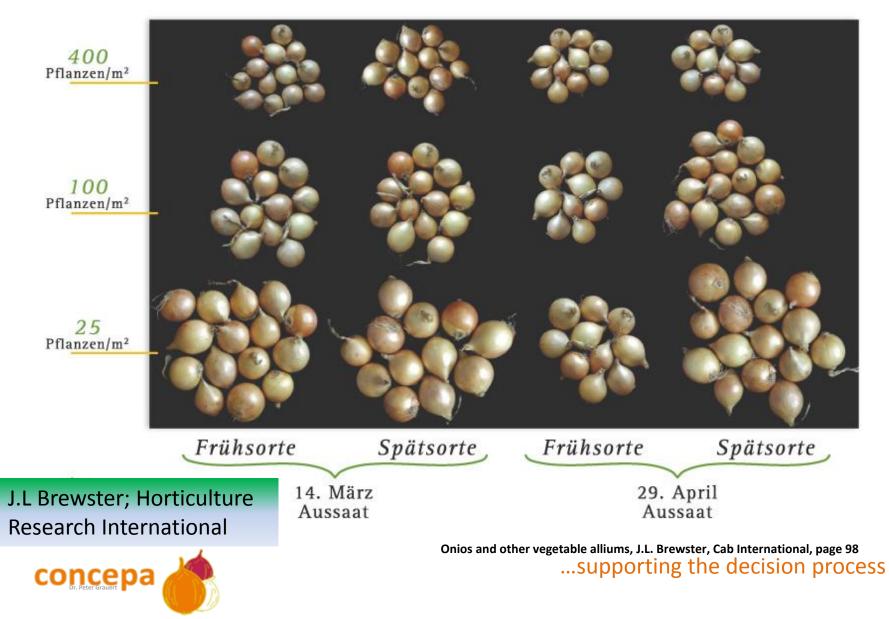
The discussion of plant distribution

....an endless story

Single rows in broad beds ? Triple row on a 1,50 m bed ?

The effect of single plant distance on size is very much less than often estimated

Taken North-West Europe


Taken in New Zealand

The seedling size at bulb induction decides

Sowing/planting period and bulbsize

Population and bulb size

If they want to grow they just do

Uniformity of size is predesigned By uniformity of seedling establish ment.

Uniformity of seedling establishment was and is crucial

Pls note : this double row leaves room for additonal 10 -11 full size plants while cost per squm are the same as for full population.

Watch the undersized plts !

The Plant Size when Bulbing defines the Yield Potential

Leafless **inner Scales** = Bulb-**Scales make** more than 50 % of **Diameter**

More scales in onions with longer growth phase before Photoperiod

Uniformity more important than density of population !!

The major challenges

- Seedling establishment
- Weed controll
- Pests and diseases
- N management
- Irrigation systems
- Maturity process
- Harvest and preparation for storage

A Store is not a hospital !!

Germination and link to capillar water

concepa Dr. Peter Grauert

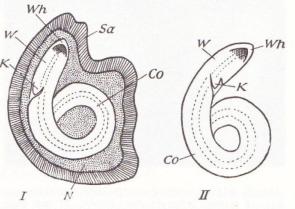


Abb. 7. I Samen der Küchenzwiebel im Längsschnitt. Sa Samenschale, N Nährgewebe; II isolierter Embryo, Co der schneckenförmig aufgerollte Kotyledo, K Sproßknospe, W Wurzelanlage mit der Wurzelhaube Wh

ATTN: shallow root system !! No Hair – roots !!

Table 10

Root morphological properties of onions compared to other plant species

	Root Radius	Root Hairs		
Сгор	(mm)	No. per mm	Ave. length (mm)	
Onions	0.23	1	0.05	
Wheat	0.07	46	0.33	
Tomato	0.10	58	0.17	
Spinach	0.11	71	0.62	

REF: FÖAHSE ET AL - 1991

Courtesy of YARA, Norway

Weeds ?

- Most discussion time in onion crop spent for weed controll
- Almost every herbicide application costs yield
- Splitting strategies preferred (small dosis frequently applied)
- Think about final cost of herbicides incl. Loss of yield

• Take mechanical options into account. concepa

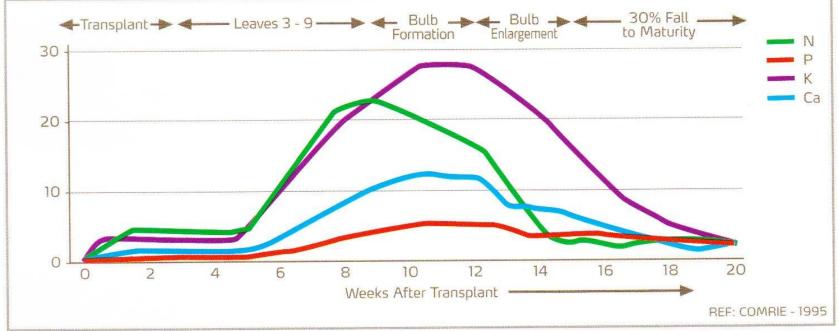
Use herbicides in optimal condition for full efficiency !

Totalherbicide before emergence??

Also very small weeds

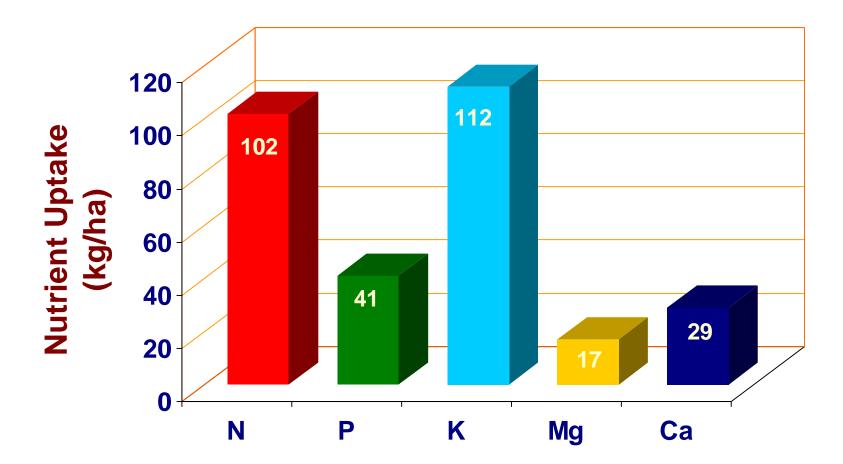
...become big

Timing of Herbicide is most important


- No leaf active herbicides after bulb induction
- Try hard to wait for best wax layer on leaves
- Always low dosis frequently repeated

Nutrient needs with coincidence to Plant development curve

Figure 3


Major Nutrient Uptake - Whole Plant (kg/ha/week) Onions - South Africa

Courtesy of YARA, Norway

Uptake of major minerals by 60 to net yield

Nitrogen Supply Strategy

- N supply according to real plant need
- Oversupply will be absorbed by the crop
- Rarely N is really missing but frequently there is oversupply
- Late oversupply increases canopy on cost of bulb size

concepa

The onion N-min.-history in Germany

- Middle of eighties public discussion of groundwater nitrate started
- First results to analyse in reliable way the mineralic N available in the ground = N-min
- Onions and in especially overwintering onions had become kind of bonanza – crop !!
- Second half of eighties first onions from southern hemisphere with excellent quality = strong competition in quality aspects !!

Continued: N-min-history in Germany

- Until mid of eighties until end > 200 kg N / ha
- Nobody took soil type, precrop or season into account
- Packers and dealers started initiative to improve quality of local production with overwintering onion
- Soil analysis systems became available

What made it successful

- The results from many fields and farms were almost always positive
- The packers were very much behind the issue
- The advisory situation in the according onion area was luckily excellent and interested
- Problem today : the evaluation data are "lost" as never in digits

Necessities to apply an measured system

- Farmers must trust !!
- System must be reliable
- The results need explanation and plausibility
 For ex. Repeat sampling etc. if plausibility is missing.
- Needs convinced persons behind
- System needs to be adopted to local conditions

Example of results spring sown onions

	ingung 8.3./8.5.	Nmin 0-6 24.5.	ocm VF	Empf.	Nmin-Abschlüz 17.8.	Ertrag (dt/ha)	Sort
1 1 1 1	91	86/35	ww	30	31/42	600	Gr. B., Coso Bronco, Ar Brūno, Alsia
	91	37/53	Dūrūm	0	<10/<10	630	Oporto Hyton
	<u>Bemer Ku</u> Rualität				e: sl Beveguin ve vom Feld 2 in h immer im Lag		

Example of results overwintering onions

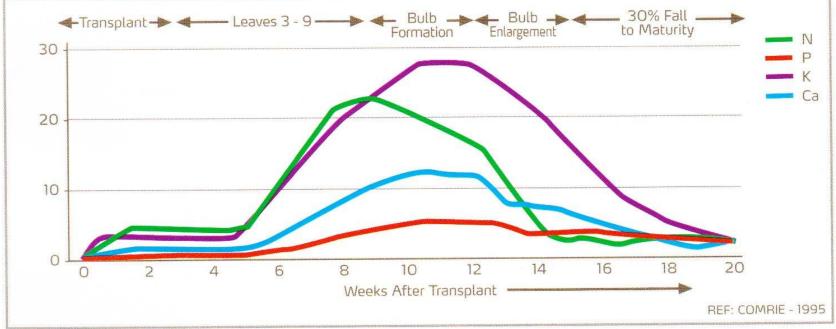
Zusammen hang zwischen Nmin, Ertrag und Qualität bei Winter zwiebeln 1983

Feld	Düngüng	Nemin O-belen	VF Boden	Empf.	Nuin- Abschliß	Eutrag	Sorte
1	Herbst 88/Feb. 89 61 N	5.4.83 <10/12	Kautoffel CS	60	28.6.89 23/25		K. Well
2	14. A. / 8. 3. 89 111 N	28.3.89 49/53	Gemüse 5-lS	35/24*		520 Jt 610 dt	Express Dragon
3	14.1.1 8.3.83 111 N	28.3.83 48/55	bremüse ES	30/24*			K. Well
4	14.1. 18.3.89 111 N	28.3.89 73/-	Kautoffel L-t	50/30*		780 <i>J</i> t	K. Well
5	Nimin 3.10.88 Frühj.83 192 /	20.3.83 30/74	F. Kartoffel CS	40	28.6.85 27/68		K. Well
6	Nuning 3.40.88 Frühis 89 192 /	20.3. 89 40/87	7. Kurtoffel LS	35	28.6.83 34/70	750 dt	K. Well Y. Stone Express

*= tatsächliche Düngüng

Courtesy of Bolap GmbH

... supporting the decision process



57

Nutrient needs with coincidence to Plant development curve

Figure 3

Major Nutrient Uptake - Whole Plant (kg/ha/week) Onions - South Africa

Courtesy of YARA, Norway

Exellent cooperation of all parties: public and private advisors, dealers and farmers

Conclusions and situation today

- About 40 % of former N-amounts applied today.
- The ability to measure allows a year specific N- supply
- Onion crop is ideal with its photoperiod driven physiology
- N-reduction does not lead to less yield but improved quality (skins, firmness etc.)

Optimal maturity process

Best way to achieve Dormancy and Skins ?

Lifting in time = cut from roots Dry without topping

Harvest Impressions

South Africa

Germany

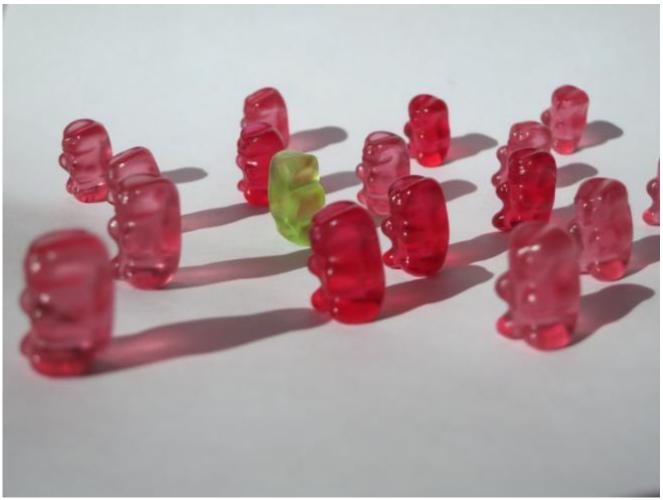
Argentina

Spain

Maturity and Harvest – what is the *"best"moment ?*

- >70 % of leaves shall have died "healthy
- Keep healthy until harvest
 !!
- Lifting accelerates maturity process
- Phytohormones steer the dormancy
- Dormancy likely supports skin development
- Topping after Dormancy is fully achieved !!

overwintering onions June at Albacete SP



Most important: meet and discuss with collegues

Always try to find and follow your own individual way

What has happened here ??????? 3 – 5 holes / sqm all over the field

Any other Question left ??

